# **CHAPTER SIX**

## **POLYGON**

### **Polygons:**

- A polygon is a plane figure bounded by straight lines.

| Polygon         |               |
|-----------------|---------------|
| Number of sides | Name          |
| 3               | Triangle      |
| 4               | Quadrilateral |
| 5               | Pentagon      |
| 6               | Hexagon       |
| 7               | Heptagon      |
| 8               | Octagon       |
| 9               | Nonagon       |
| 10              | Decagon       |

## The interior and exterior angles of a polygon:

- The interior angles of a polygon are those angles, which lie within the polygon. -The exterior angles of a polygon are those ones, which lie outside the polygon.

е Example:

I = interior angle.

E = exterior angle.

- For any polygon, the sum of the exterior angles =  $360^{\circ}$ .

Q1) Calculate the value of each exterior angle of a regular decagon.

#### Soln

Decagon has 10 sides and as such has 10 exterior angles. But since the sum of the exterior angles of any polygon =  $360^{\circ}$ ,

 $\Rightarrow$ 10 exterior angles = 360°,

 $\Rightarrow$ 1 exterior angle =  $\frac{1}{10} \times 360 = 36^{\circ}$ .

 $\Rightarrow$  Each exterior angle = 36°.

Q2) Find the value of each exterior angle of a regular pentagon.

#### Soln

Since pentagon has 5 sides, then it has 5 exterior angles.

But since the sum of the exterior angles of a polygon =  $360^{\circ}$ ,

$$\Rightarrow$$
5 exterior angles = 360°,

 $\implies$ 1 exterior angle =  $\frac{1}{5} \times 360^\circ = 72$ .

The value of each exterior angle of a pentagon =  $72^{\circ}$ 

Q3).



For the given figure, determine the value of *x*.

Soln

The given figure is a quadrilateral or a polygon. The angles marked  $5x^{\circ}, 4x^{\circ}, 3x^{\circ}$  and  $8x^{\circ}$  are the exterior angles, and since the sum of the exterior angles of a polygon =  $360^{\circ}, \Rightarrow 3x + 8x + 5x + 4x = 360^{\circ}, \Rightarrow 20x = 360 \Rightarrow x = \frac{360}{20} = 18^{\circ}.$ 

Q4.



For the given figure, determine

- a) the value of x.
- b) the values of the angles marked x, 2x, 3x, 4x and 5x.

Soln

(a)The given figure has five sides and as such it is a pentagon which is a polygon. The angles marked  $x^{\circ}$ ,  $2x^{\circ}$ ,  $3x^{\circ}$ ,  $4x^{\circ}$ , and  $5x^{\circ}$  are the exterior angles. Since the sum of the exterior angles of a polygon =  $360^\circ$ , then  $x^\circ + 2x^\circ + 3x^\circ + 4x^\circ + 5x^\circ = 360^\circ$ ,  $\Rightarrow 15x^\circ = 360^\circ$ ,  $\Rightarrow x = \frac{360}{15} = 24^\circ$ .

a) i. The angle marked x° = 24°.
ii. The angle marked 2x = 2(24) = 48°.

iii. The angle marked  $3x = 3(24) = 72^{\circ}$ .

- i. The angle marked  $4x = 4(24) = 96^{\circ}$ .
- ii. The angle marked  $5x = 5(24) = 120^{\circ}$ .

(Q5)



For the given figure, determine the values of the angles marked x and 3x.

Soln.

The given figure is a polygon and the angles marked  $x^{\circ}$ ,  $x^{\circ}$ ,  $3x^{\circ}$ ,  $30^{\circ}$  and  $80^{\circ}$  are the exterior angles. Since the sum of the exterior angles =  $360^{\circ}$ , =>  $x^{\circ} + x^{\circ} + 3x^{\circ} + 30^{\circ} + 80^{\circ} = 360^{\circ}$ , =>  $5x + 110^{\circ} = 360$ , => 5x = 360 - 110 = 250, = >  $x = \frac{250}{5} = 50 => x = 50^{\circ}$ .

The value of the angle marked  $x = 50^{\circ}$ , and that of the angle marked  $3x = 3(50) = 150^{\circ}$ 

Q6.



For this figure, calculate

- a) the value of *x*.
- b) the values of the angles marked *x*, 2x and  $3x^{\circ}$ .

N/B: The value of the exterior angle which lies next to the 130° angle must first be determined. Let this angle =  $b^{\circ}$ 

i.e



a) Since angle 130° and b° lie on a straight line, then  $130^\circ + b = 180^\circ$ ,  $= b = 180 - 130^\circ = 50^\circ$ .

The exterior angles of the given polygon are 40°,  $2x^\circ$ , b°, 3x and x. Since the sum of the exterior angles of a polygon = 360, => 40 + 2x + b + 3x + x = 360, => 40 + b + 6x = 360, => 40 + 50 + 6x = 360, => 90 + 6x = 360, => 6x = 360 - 90, =>  $6x = 270^\circ => x = \frac{270}{6} = 45^\circ$ .

- a) i. The angle marked x = 45°.
  ii. The angle marked 2x = 2(45°) = 90°.
- iii The angle marked  $3x = 3(45^\circ) = 135^\circ$ .