CHAPTER FOUR

TRANSFORMATION

- This involves the changing of the position, shape or the size of a figure.
- There are various types and those we shall consider are:
 - a. Translation. b. Reflection.
 - c. Rotation. d. Enlargement.
- Reflection, rotation and translation are called rigid motion because under these transformations, the shape or size of the figure transformed does not change
- But enlargement is not a rigid motion since the size of the object changes

TRANSLATION:

- In this, every point moves the same distance in the same direction.
- The sizes of angles, as well as the lengths of lines do not change.
- If the point (x, y) is translated by the vector $\binom{a}{b}$, then $(x, y) \rightarrow (x + a, y + b)$;
- Point (x + a, y + b), is the image of the point (x, y).
- The vector $\binom{a}{b}$ is called the translation vector.
- For example if (2,5) is translated by the vector $\binom{1}{4}$, then (2,5) -> (2 + 1,5 + 4), => (2,5) -> (3,9), where (3,9) is the image of (2, 5).

- The transformation mapping can also be presented as: $\binom{x}{y} = \binom{x}{y} + \binom{x}{y}$
 - $\binom{a}{b} = \binom{x+a}{y+b}$, where $\binom{x}{y} = the$ point which under went the transformation,
 - $\binom{a}{b} = the \text{ vector of transformation, and } \binom{x+a}{y+b} = the image.$

Q1. A point (3, 1) underwent a translation. If the translation vector is $\binom{4}{2}$, determine its image.

Soln. Under a translation by the vector $\binom{4}{2}$, $(3,1) \rightarrow (3 + 4,2 + 1)$, $=> (3,1) \rightarrow (7,3)$.

Q2. Determine the image of the point (-2, 4), under a translation by the vector $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$

Soln.

Under such a translation, (-2, 4) $-> (-2 + \frac{1}{1}, 4 + \frac{1}{3}) => (-2, 4) -> (-2 - 1, 4 - 3) => (-2, 4) -> (-3, 1).$

Q3. If the point $\binom{-3}{-2}$ undergoes a translation by the vector $\binom{2}{-4}$, determine its image.

Soln. Under such a transformation, $\binom{-3}{-2} \rightarrow \binom{-3+2}{-2+\frac{-4}{4}}$, => $\binom{-3}{-2} \rightarrow \binom{-1}{-6}$. Q4. If p* (4, 6) is the image of a point p, under a translation by vector

 $\binom{1}{2}$, determine the coordinates of the point p.

Soln. If the coordinates of p is $\binom{x}{y}$, then under such a translation, $\binom{x}{y} \rightarrow \begin{pmatrix} x+1\\ y+2 \end{pmatrix} = \binom{4}{6}$. From $\binom{x+1}{y+2} = \binom{4}{6}$, $= \binom{x}{y} = \binom{4-1}{6-2} = \binom{3}{4}$. Therefore the coordinates of p are $\binom{3}{4}$ or (3,4).

Q5. If Q, (4, 3) is the image of the point Q under a translation by the vector $\binom{-2}{-4}$, find the coordinates of Q.

Soln.

Let $\begin{pmatrix} x \\ y \end{pmatrix}$ = the coordinates of the point Q.

Under such a translation, $\binom{x}{y} \rightarrow \binom{x+\overline{2}}{y+\overline{4}} = \binom{4}{3}, \therefore \binom{x-2}{y-4} = \binom{4}{3} = > \binom{x}{y} = \binom{x}{3} = > \binom{x}{y} = \binom{x}{3} = > \binom{x}{y} = \binom{x}{3} = > \binom{x}{3}$

Soln.

Let $\binom{x}{y}$ = the vector of translation. Then $\binom{2}{4} + \binom{x}{y} = \binom{5}{11}$, $= \binom{2+x}{4+y} = \binom{5}{11}$, $= \binom{x}{y} = \binom{5-2}{11-4} = \binom{3}{7}$, => the vector of translation $=\binom{3}{7}$.

Q7. After being subjected to a translation, the image of the point $p\binom{-2}{4}$ was $p_1\binom{-6}{-2}$. What was the translation vectors?

Soln.

Let $\binom{x}{y}$ = the translation vector. Then $\binom{-2}{4} + \binom{x}{y} = \binom{-6}{-2}$, $= \binom{x}{y} = \binom{-6+2}{-2-4} = \binom{-4}{-6} = >$ the translation vector is $\binom{-4}{-6}$.

Reflection:

- Reflection occurs literally in the mirror line, which is the position where the mirror is assumed to be positioned.
- With respect to reflection, the object and its image are on the opposite side of the mirror line.
- Apart from that, the perpendicular distance between the object and this line, is the same as the perpendicular distance between the line and the image.

- The x axis is the same as the line y = 0.
- Under reflection, the lengths of lines and the sizes of angles do not change.

Reflection in the x-axis or the line y = 0:

- For such a reflection, $(x, y) \rightarrow (x, -y)$.
- This mapping can also be written as $\binom{x}{y} \rightarrow \binom{x}{-y}$

Q1. If the point (2, 4) undergoes a reflection in the line y = 0, determine its image.

Soln. Under such a reflection(x, y) \rightarrow (x,-y), => (2, 4) \rightarrow (2, -4).

Q2. Determine the image of the point (-2,- 4), after a reflection in the x - axis.

Soln. Under such a reflection, $(x, y) \rightarrow (x, -y), =>(-2, -4) \rightarrow$ (-2, 4). N/B: y - axis

The y- axis is the same as the line x = 0.

Reflection in the y-axis or the line x = 0:

- Under such a reflection, (x, y) →(-x, y).

- This mapping can also be written as $\binom{x}{y} \rightarrow \binom{-x}{y}$.

Q1. Determine the image of the point (2, 4), under a reflection in the y - axis.

Soln. Under such a reflection, $(x, y) \rightarrow (-x, y) = (2, 4)$ -> (-2, 4). Q2. Find the image of the point $\binom{-2}{-6}$, under a reflection in the line x = 0. Soln.

For such a reflection, $(x, y) \rightarrow (-x, y) = (-2, -6) \rightarrow (2, -6)$.

Rotation:

- This is measured in degrees, and in either the anticlockwise or the clockwise direction.

- Rotation in the clockwise direction is taken as negative, while that in the anticlockwise direction is taken as positive.

i.e

- Rotation is measured from the x-axis, or with reference to the x axis.
- <u>Clockwise rotation through 90° or anticlockwise rotation through</u> 270° about the origin:

- -
- From the drawn diagram, a clockwise rotation through 90°, is the same as an anticlockwise rotation through 270°, since they all have a common meeting point or meet on the same line.
- Under such a rotation $(x, y) \longrightarrow (y, -x)$.