CHAPTER SIX

VECTORS

- A vector is any physical quantity which has both magnitude and direction.
- Examples of vectors are:
 - a. a force of 20N acting north.
 - b. a velocity of 5km/h East.

Types of vectors:

- In general there are two types of vectors, and these are:
- i. Free vector.
- ii. Position vector.

Free vector:

- A free vector is a vector which does not pass through any specific point or position.
- They are usually represented by small letters e.g. a_{\sim} , b_{\sim} and c_{\sim} .

Position vector:

This is a vector which passes through the origin or a specified point.

Vector Notation:

- A vector can be represented by a line segment as shown next:

A — → B

- This may be written as \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} or $\overset{AB}{\sim}$.

The unit vector ;

- This is a vector whose magnitude is one in a direction under consideration.

- The unit vector along a vector \vec{a} is written as \hat{a} .
- Also the unit vector along the vector \overline{AB} is written as \widehat{AB} .

The zero vector or the null vector:

- This is a vector whose magnitude is zero and its direction is undefined.
- It is represented by $\frac{1}{O} = \begin{pmatrix} o \\ o \end{pmatrix}$
- A zero vector has no effect with respect to addition.
- Therefore if ${}^{0}_{\sim}$ = the zero vector, then ${}^{a}_{\sim}$ + ${}^{0}_{\sim}$ = ${}^{a}_{\sim}$

The negative vector:

- The negative vector of the vector $\frac{a}{\sim}$ is written as $\frac{a}{\sim}$
- A vector when added to its negative gives us the zero vectors.
- For example $a^{a} + (a^{-a}) = a^{0}$
- The vector \bar{a} is a vector which has the same magnitude as \bar{a} , but it is in the opposite direction.

$$a \sim -a \sim$$

- If $a = \overline{AB}$ then $\overline{a} = \overline{BA}$, and $\overline{AB} + \overline{BA} = 0$
- Also if ${}^{b}_{\sim} = \overrightarrow{CD}$, then ${}^{-b}_{\sim} = \overrightarrow{DC}$ and $\overrightarrow{CD} + \overrightarrow{DC} = {}^{O}_{\sim}$

N/B: The negative vector of the vector \overrightarrow{CD} is \overrightarrow{DC} .

Notation of the magnitude of a vector:

- The magnitude of the vector \overrightarrow{AB} is written as
- $\left| \overrightarrow{AB} \right|$
- Similarly the magnitude of the vector \vec{b} is written as |b|,
- If vector $\overrightarrow{OP} = \begin{pmatrix} a \\ b \end{pmatrix}$, then its magnitude $= |\overrightarrow{OP}| = \sqrt{a^2 + b^2}$
- For example if $\overrightarrow{OP} = \binom{6}{5}$, then the magnitude of $\overrightarrow{OP} = \sqrt{6^2 + 5^2} = \sqrt{61}$

Scalar multiplication of a vector:

- A scalar may be a whole number or a fraction.
- When a scalar multiplies a vector, the product or what we get is also a vector.
- For example if our vector is $\stackrel{\sim}{a}$ and the scalar is 2, then 2 x $\stackrel{\sim}{a}$ = 2 $\stackrel{\sim}{a}$ and 2 $\stackrel{\sim}{a}$ is also a vector.

Q1. Find the numbers m and n such that $m\binom{3}{5} + n\binom{2}{1} = \binom{4}{9}$.

Soln.

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9} = \binom{3m}{5m} + \binom{2n}{n} = \frac{4}{9}$$
, therefore $3m + 2n$
= 4 and $5m + n = 9$

Solve these two equations simultaneously i.e

Let 3m + 2n = 4 ----- eqn (1)

and 5m + n = 9 ----- eqn (2)

Equation (2) x -2 => $-10m - 2n = -18 \dots eqn(3)$

Add eqn (1) and eqn (3)
i.e
$$3m + 2n = 4$$

 $+ \frac{-10m - 2n = -18}{-7m + 0 = -14}$
 $= > -7m = -14, = > m = \frac{-14}{-7}, = > m = 2.$

Put m = 2 into equation (2) ie 5m + n = 9 => 5(2) + n = 9, => 10 + n = 9, => n = 9 - 10 = -1.

N/B:

- i. Given the points A and B, then $\overrightarrow{AB} = B A$.
- ii. For example if $A = {5 \choose 2}$ and $B = {10 \choose 6}$, then $\overrightarrow{AB} = B A = {10 \choose 6} {5 \choose 2} = {10 5 \choose 6 2} = {5 \choose 4}$.
- iii. Also if $C = \binom{4}{2}$ and $D = \binom{6}{1}$, then $\overrightarrow{CD} = D C = \binom{6}{1} \binom{4}{2} = \binom{6-4}{1-2} = \binom{2}{-1}$

Q2. If A = (4, 5) and B = (6, 2) find \overrightarrow{AB}

Soln.

Since $A = (4, 5) => A = \binom{4}{5}$.

Also since B = (6, 2) => $B = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \cdot \overrightarrow{AB} = B - A = \begin{pmatrix} 6 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 - 4 \\ 2 - 5 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, =$ > $\overrightarrow{AB} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}.$

N/B:

i.
$$\overrightarrow{AB} = -\overrightarrow{BA}$$

ii. If $\overrightarrow{AB} = {4 \choose 2}$, then $\overrightarrow{BA} = -AB = -{4 \choose 2} = {-4 \choose -2}$
iii. Also if $\overrightarrow{CD} = {-2 \choose 5}$, then $\overrightarrow{DC} = -\overrightarrow{DC} = -{2 \choose -5}$

Q3. If A and B are the points (2,1) and (1, 2) respectively, find \overline{AB} and \overline{BA} .

Soln.

i. Since $A = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\Rightarrow \overline{AB} = B - A = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 2 \\ 2 - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$; i. $\overline{BA} = -\overline{AB} = -\begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Q4. If $\vec{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\vec{B} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, evaluate the following: i. $\vec{A} + \vec{B}$ ii. $|\vec{A} + \vec{B}|$ iii. \vec{AB} iv. $|\vec{AB}|$ Soln.

i. $\vec{A} + \vec{B} = \binom{2}{1} + \binom{3}{4} = \binom{2+3}{1+4} = \binom{5}{5}$. ii. Since $\vec{A} + \vec{B} = \binom{5}{5}, = > |\vec{A} + \vec{B}| = \sqrt{5^2 + 5^2} = \sqrt{25 + 25} = \sqrt{50}$. iii. $\overline{AB} = B - A = \binom{3}{4} - \binom{2}{1} = \binom{3-2}{4-1} = \binom{1}{3}$ iv. Since $\overline{AB} = \binom{1}{3}, = > |\overline{AB}| = \sqrt{1^2 + 3^2} = \sqrt{1+9} = \sqrt{10}$. N/B: $|\overline{AB}|$ means the magnitude of vector AB.